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ABSTRACT: Electric vehicles (EVs) are frequently powered by Li-
ion batteries (LIBs) due to their substantial capacity of energy;
nevertheless, thermal runaways (TRs) can cause performance issues
and safety dangers. Battery thermal management systems (BTMs) are
essential for mitigating the difficulties by lowering the extreme
temperature of the battery and the differential temperature. Among
the several BTMS technologies, phase change material (PCM)
embedded systems have received a lot of interest, because of their
simplicity, low cost, and elevated latent and sensible heat. The current
study analyzes the passive BTMS (mostly on PCM and fin-based) for
cylindrical LIB, looking at the impact of temperature on the battery
performance. The invesigation has focused on the performance of
battery cooling, in conjunction with PCM, and the enhancement of
thermal conductivity through the use of metal foams, nanometal oxides, and carbon particles. A systematic review focusing on
innovative fin configurations is also presented to evaluate the effects of different fin characteristics on the efficacy of BTMS.
Moreover, to make the studies more practical in application, lightweight PCM-BTMS, structural stability, space availability, and
innovative fin shapes, such as spiral fins, with optimal placement concepts are discussed. The constraints of batteries, PCMS, and
thermoelectric coolers are investigated further in order to foster viable solutions for BTMS for EV applications. The goal of this
assessment is to provide guidance for the development of practical BTMS that meet power, volume, and weight requirements.

1. INTRODUCTION
Due to the tremendous population expansion, the need for
energy is increasing every day throughout the world. The
conventional automotive sector is one of major contributors to
the greenhouse emissions.1 As a result, policymakers are
increasingly favoring electric vehicles (EVs) as the most
promising transportation technology, which is more environ-
mentally friendly than internal combustion-driven vehicles.2,3

A survey of global EV demand between 2020 and 2030 is
reported in Figure 1.4 Arguably the most intriguing innovations
for utility-scale electricity storage and transmission are batteries
for EVs. In this context, Li-ion batteries (LIBs) are extensively
used to power the EV, due to their high power and energy
densities.5−7 Over the past several years, there has been a
significant increase in incidents involving fires and explosions
in LIB.8−10 The high flammability of the electrolyte in the LIB
poses a major fire hazard during its usage if there are any faults
in the design or production process.11 Therefore, ensuring the
thermal safety of these batteries has become a crucial factor
limiting their widespread use. Due to its great efficiency, hybrid
battery thermal management systems (BTMS) have drawn

increasing interest. However, many factors significantly affect
how much energy is used and how well the combined BTMS
performs, making it necessary to suggest a practical cooling
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Figure 1. A prospective study on obliged for electric vehicles
worldwide between (a) 2020 and (b) 2030.
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technique and an intelligent technique to optimize different
parameters with minimal computing load.12−16

Figure 2 presents the constructional details of a LIB cell and
its mechanism. Li+ ions cross the separator from the cathode
region to the anode area during the discharging process, and
the process is reversed during the charging state. Redox
reaction occurs during the charge transfer process at the
electrode, producing additional electrons whose flow through
an external circuit results in electricity. Within this spectrum,
there are multiple varieties of LIBs. such as lithium nickel
cobalt manganese oxide (LiNiCoMnO2), lithium iron
phosphate (LiFePO4), lithium nickel manganese spinel
(LiNi0.5Mn1.5O4), lithium nickel cobalt aluminum Oxide
(LiNiCoAlO2), lithium manganese oxide (LiMn2O4) and
lithium cobalt oxide (LiCoO2), including module, polymer,
prismatic, and battery pack formats. Equation 1 depicts a
reaction that occurred at the cathode (LiFePO4) while eq 2
depicts a redox reaction that occurred at the anode (carbon).17
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To analyze and implement techniques and technological
advances for substantially managing the variety of temperatures
of the battery cells and consequently enhancing their

functioning, much research on BTMS has been conducted.18,19

The BTMS is essential since the resilience of the battery cells is
directly impacted by temperature, power availability, and
drivability.20 In BTMS, PCM, liquid and air cooling are
typically used. Due to their simplicity of use and low cost,
liquid and air-cooling strategies are widely used.1,21−23 The
properties of different types of LIBs are reported in Table 1.
This study delves into the various design and operating

approaches of several BTMS types, including air and liquid-
oriented BTMS, and heat pipe-oriented BTMS. The present
paper offers a summary of the latest advancements in PCM-
based methods for maximizing thermal conductivity, including
expanded graphite and fibers, metal mesh, metal fibers, and
metal foam. To the best of the authors’ knowledge, there are
limited works available that go through a detailed analysis
about the variety of materials that can be incorporated with
PCM and how the perform with PCMs, the fin number in the
PCM module, impact of the external heat-transfer coefficient
on the PCM module and provides some innovative ideas and
biomimetic approaches in this field. Moreover, to make the
studies more practical in application, lightweight PCM-BTMS,
structural stability, space availability, and innovative fin shapes,
such as spiral fins, with optimal placement concepts are
discussed. The paper describes the challenges and potential
outcomes of using BTMS to develop LIB technology.

Figure 2. Constructional details of a lithium-ion battery (LIB) cell and its mechanism.

Table 1. Different Types of LIBs and Their Properties

Electrode Material

battery type cathode anode
operating voltage

(V)
operating temperature

(°C)
specific capacity
(mAh/g)

thermal runaway
(°C) ref

lithium−cobalt oxide LiCoO2 graphite 3.6−4.2 −20−55 140−180 150 24
lithium−nickel manganese cobalt
oxide

LiNiMnCoO2 graphite 3.7−4.2 − 140−180 210 24

lithium iron phosphate LiFePO4 graphite 13.2−13.6 −30−60 160−180 270 24
lithium−manganese oxide LiMn2O4 graphite 2.8−3.2 −40−60 90−130 250 25
lithium titanate LiMn2O4 Li4Ti5O12 1.9−2.5 −40−60 170−180 177 26
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2. TEMPERATURE EFFECT ON LIB PERFORMANCE
Although the battery may store heat, the main issue is that
when it is being discharged, the battery’s internal temperature
increases. Temperature extremes have a significant detrimental
impact on batteries, shortening their life cycles and posing
safety risks. Thermal runaaway (TR) can occasionally be
caused by extreme overheating. Table 2 lists various studies
looking into how batteries are affected by temperature.
2.1. The Process of Thermal Runaway and Methods

of Prediction. The generation of heat due to the exothermic
reaction inside the battery causes the TR. The battery cell
temperature rises due to the accumulation of the generated
heat, which leads to an exponential increase in the exothermic
reaction rate. At cell temperatures over 80 °C, the exothermic
process becomes uncontrollable, leading to a constant increase
in the temperature of the battery pack and finally resulting in
TR.30,31 Furthermore, the internal component of the battery
cell starts to decompose when the battery temperature reaches
130−150 °C.32 For example, the electrolyte begins to break
down at temperatures between 100 °C and 120 °C. The
diaphragm, which is made of polyethylene (PE) and
polypropylene (PP), is damaged at ∼135 °C. The solid
electrolyte interlayer (SEI) on the solid anode electrode starts
to dissolve at roughly 80 °C. The decomposition of the
electrolyte leads to the production of enormous quantity of
flammable gases, particularly H2, CH4, C2H6, and C2H4, which
can further cause fire in the battery cell at higher temper-
ature.33 In addition, the battery will immediately release huge
amount of heat stored in the electrical energy and gas
production due to the damage of separator and being the short
circuit phenomena inside the battery cell. This phenomenon of
releasing heat exacerbates the abnormal temperature rise and
the chain reaction occurs until TR happens.
There are mainly three steps in a TR. Due to separator

faults, the battery experiences a change in condition in the first
stage that causes an increase in internal temperature and
eventually, the start of overheating. The battery experiences an
exothermic reaction in the second phase, as a result of a sharp
increase in internal temperature.13 In the third phase,
flammable electrolytes burn and cause an explosion. Addition-
ally, high temperatures are caused by the heat that builds up
inside batteries during charge−discharge cycles, which short-
ens their lifespan and affects their functionality. Figure 3
illustrates a diagram of the TR.
The prediction and warning methods for the TR in LIBs are

developed using the battery’s electrochemical mechanism and
data.34 The battery heat generation and the TR boundary are
estimated on the basis of the coupled electrochemical−thermal
model and the battery operating conditions, respectively, in
terms of the TR prediction and early warning methods on the
basis of the electrochemical mechanism of the cell. In addition,
the TR of the battery cells and battery packs can be measured

by monitoring the concentration of gas, particularly CO2, CO,
etc. at the early stage of the TR. A study shows that more
flammable gases will be released in LIBs during the
overcharging state, resulting in a greater explosion which can
be the indication of TR condition of the battery.35 The
characteristic of the electrochemical impedance spectrum can
be the sign of warning of TR in LIBs, which will help to
estimate the real-time temperature inside the battery cell and
detect battery overcharging through the characteristic spec-
trum. To develop an accurate and widely applicable method
for predicting and warning about TR in lithium-ion batteries, a
multiscale approach should be constructed. This approach
should consider both external factors such as temperature,
voltage, and current, as well as internal mechanisms like
electrochemical reactions and material changes.34

2.2. Thermal Management System of Batteries. Heat
generation in LIBs is due to both reversible and irreversible
processes. The reversible process is caused by the entropy
change during the electrochemical reaction and the irreversible
process, including the ohmic heat generation, a heat
production due to the polarization process, and the trans-
portation of ions through the electrolyte.36−38 The polarization
process in the battery cell leads to the accumulation of
hydrogen bubbles in the surface of the anode and resists the
normal flow of ions. When the lithium ion exceeds this
resistance, heat is generated.39 Furthermore, the huge amount
of heat emission also occurs for the disturbance of ion
transportation and the mixing of ions due to the overcharging
and rapid discharging process.40 The enormous amount of heat
generation enhances the battery internal temperature and, if
the temperature goes beyond 80 °C, exothermic reactions
become uncontrolled, leading to TR. Temperatures above 40
°C have a detrimental effect on the functionality and service
life. During the ideal conditions of 15−40 °C, LIBs function

Table 2. Summary of Literature Related to Investigating the Temperature Effects on the Battery

battery
type test method

temperature
range key findings ref(s)

lithium-
ion

experimental −20 °C to
60 °C

The storage capacity increases by 20% from 25 to 45 °C at higher temperatures but reduces the battery’s
lifespan. Charging at 45 °C can result in greater deterioration than charging at 25 °C.

27,
28

sodium-
ion

simulation −70 °C to
100 °C

At −70 °C, this power source generates 70.19% of its stored energy at the ambient temperature. This battery
also performs effectively at 100 °C due to the electrolyte’s high boiling point.

29

lead-acid simulation −10 °C to
25 °C

Discharge rates lower battery capacity and vice versa. Temperature boosts battery capacity. At 30 °C, battery
capacities for 2, 3, and 4 Ω are 57.783, 58.74, and 60.467 Wh. At 2 Ω, battery capacities at 30, 40, and 50 °C
are 57.783, 58.175, and 58.213 Wh. Temperature accelerates the voltage decrease.

28

Figure 3. Effect of temperature change inside the LIB cell.
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effectively.41−43 A schematic diagram of battery performance at
different temperature ranges of LIB is presented in Figure 4.

When the temperature difference between the cells exceeds 5
°C, 2% reduction of the battery capacity takes place.44

Therefore, it is necessary to maintain the battery’s state and
the lowest temperature disparity between the battery pack
inside the limits set forth of 15−35 °C.13 Hence, BTMS is
regarded as the effective way to extract the generated heat from
the battery cell and reduces the changes of overheating or TR,
therefore improving the performance of the battery. In the
recent year, many strategies related to BTMS have been
proposed and adopted in the research community to control
the temperature of LIBs.45 Figure 5 depicts the different types

of BTMS applied in the battery for cooling purposes. BTMS
technology can be classified as main three types, based on the
medium used, viz, air-based, liquid-based, and PCM-based.46

At present, active liquid cooling, active air cooling, heat pipe,
PCM, PCM with thermal conductivity enhancer additives, and
fin-based BTMS cooling technology have been attracting
attention in the research community. Moreover, different
resources all over the world have been experimenting with
different active BTMS systems and determining the results.
Some resource data of air and liquid-based, thermoelectric-
based, and heat pipe-associated BTMS systems are tabulated in
Tables 3−6, respectively.

3. AIRE AND LIQUID-BASED THERMAL
MANAGEMENT OF BATTERIES

Thermal control of batteries utilizing air as a cooling medium
is known as “air-based battery thermal management”. Electric
automobiles and other applications where liquid cooling
systems would not be practicable frequently employ this
technique. In order to maintain the required temperature
range, air-based BTMS often use fans to supply air over the
battery pack. To increase the degree of cooling even more, air

may occasionally be precooled before being supplied with the
battery pack.
One of the advantages of air-based BTMS is its simplicity,

less weight, and lower cost in contrast to liquid-based cooling
systems. Additionally, air-based systems are less prone to leaks
and other maintenance issues that can arise with liquid cooling
systems. However, air-based BTMS may not be as effective as
liquid-based systems in some situations. For example, in
extremely high-temperature environments or when the battery
is operating at high power levels, an air-based system may not
be able to maintain an adequate range of temperature. A lot of
resources have been done on air-based BTMS. A schematic air-
based BTMS is shown in Figure 6. and research findings are
tabulated in Table 3.

It is demonstrated that, despite advancements and
optimizations, air cooling is insufficient when the battery
discharge rate is higher and operating at high atmospheric
temperatures.42 Because coolants have a higher specific heat
capacity than other materials, researchers have suggested
cooling circuits that use water, acetone, oil, or glycol. However,
the effectiveness of liquid cooling comes with additional
expenses, complexity, size, and leakage problems. These
problems need to be fixed if a BTMS uses liquid cooling.
Figure 7 depicts the liquid-based cooling systems.
Heat pipes (HP) have proliferated in temperature control

applications recently, including the cooling of electrical
equipment and spacecraft. It has become a potential substitute
for battery temperature control due to minimal servicing costs,
versatile layout, and better heat-transfer capacity than solid
conducting material.21,57−59 Figure 8 shows a schematic of a
HP-based BTMS. Table 4 shows different heat-transfer fluids,
which have been used in indirect−contact mode by many
researchers to investigate their efficacy on the BTMS.
The design and implementation of air-based systems can be

done reasonably easily and affordably. Usually, they demand
simpler engineering and fewer components. However, air is
less thermally conductive and has a lower heat capacity than
liquids, which makes air-based systems less effective in
removing heat. Liquid-based solutions are more successful at
removing heat from batteries, because liquids have a higher
heat capacity and thermal conductivity than air. By distributing
the battery pack’s temperature more evenly, liquid cooling can
lessen stress and thermal gradients. Conversely, the design and
maintenance of liquid-based systems are more costly and
complex. Pumps, tubing, heat exchangers, and coolant fluids
are needed for them. Heat pipes do not require external pumps

Figure 4. Temperature range of the LIB.

Figure 5. Studies to related different BTMS.

Figure 6. Air-cooled packs of batteries board arrangement showing
thermal couplings and cell arrangement. [Reproduced with
permission from ref 47. Copyright 2014, Elsevier.]

Energy & Fuels pubs.acs.org/EF Review

https://doi.org/10.1021/acs.energyfuels.4c02062
Energy Fuels XXXX, XXX, XXX−XXX

D

https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02062?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02062?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02062?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02062?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02062?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02062?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02062?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02062?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02062?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02062?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02062?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02062?fig=fig6&ref=pdf
pubs.acs.org/EF?ref=pdf
https://doi.org/10.1021/acs.energyfuels.4c02062?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


or fans to function passively, which lowers energy usage and
potential failure points. They transport heat effectively and
with little temperature differential, thanks to their strong
thermal conductivity. For efficient heat transfer and thermal
contact, heat pipes must be carefully designed into battery
packs. Quality heat pipes can be more costly, which could raise
the BTMS’s total cost.

4. PASSIVE THERMAL MANAGEMENT WITH PCM
The temperature of the LIB can be managed passively through
the use of PCM. This strategy involves integrating a material
that absorbs and emits heat on phase change as a thermal
shield between the battery and its surroundings. When the
system temperature rises over a certain point, the PCM melts,
absorbing the heat and maintaining a constant temperature.
The heat is then released when the battery temperature falls.
LIB with PCM for heat management has increased energy
density, longer cycle lives, and improved safety. The drawbacks
associated with PCM are its limited operating temperature
range and the complexity of the battery’s construction using
PCM.81 The PCM material and design that is selected can
have an impact on the thermal management capabilities of
LIBs. The conductivity of heat, its limit, encapsulation
technique, and positioning of the PCM within the battery
store can all affect how well the battery performs. Table 5
displays some of the thermochemical characteristics of PCM.
Recent advancements in PCM technology for thermal

control have centered on enhancing the PCM’s performance

Table 3. Experimental Findings of Air-Based BTMS

type of the
battery modification remarks ref

cylindrical airflow velocity and configuration of
cells

variation in flow rates, varied section configurations, and distance between cell and wall were
carried out.

47

cylindrical cell arrangement for temperature change, a large battery pack having adequate distancing. 48
cylindrical flow path/ cell arrangement effects of plenum plate angle and battery unit spacing 49
cylindrical flow path/ cell arrangement the pattern is round, hexagonal, and rectangular, and there are fans at various points. 50
cylindrical cell arrangement in a manner of aligned and staggered arrays 51
cylindrical flow path improving temperature homogeneity by using reciprocating air flow 52
cylindrical flow path cell arrangement with alignment and staggering 53
cylindrical flow path combine reciprocating cooling flow with hysteresis 54
cylindrical air flow rate/cell arrangement/ flow

path
effects of air inlet velocity, staggered cell configuration, and periodic air flow reversal 55

cylindrical flow path for cooling, splitter plates with flow guide-vanes 56

Figure 7. Liquid-based BTMS with different configurations. [Reproduced with permission from ref 80. Copyright 2014, John Wiley and Sons.

Figure 8. Schematic and working principle of the heat pipe.
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and longevity, such as through the use of microencapsulation
or the incorporation of nanomaterials. For instance, the usage
of microencapsulation and nanomaterials enhance the thermal
conductivity and charging/discharging rate of the PCM.82,83

The melting process of Cu/paraffin nano-PCM was examined
both experimentally and numerically by Shuying et al.84 The
results demonstrated that the addition of 1 wt % of Cu into the
PCM reduced the melting time of pure PCM by 13.1%. These
methods have yielded promising results, exhibiting enhanced
thermal and cyclic stability. The design and manufacture of the
battery store, the choice of PCM material, the placement of
PCM inside the pack, and the compatibility of the PCM with
other battery components are all practical concerns for
adopting passive thermal management using PCM in real-
world applications. Opportunities and challenges for enhancing
the thermal management performance of LIBs using passive
PCM-based approaches including optimizing the PCM
properties and design, developing more efficient and cost-
effective manufacturing methods, and integrating advanced
sensing and control systems to ensure effective thermal
management are still ongoing development processes. There
are numerous PCMs for heat management, including paraffin,
fatty acids, and salts.85,86 Many researchers have been doing
investigations on battery thermal management for various
batteries and PCM applying different methodologies. Some of
the findings are tabulated in Table 6.
4.1. Pure PCM-Based BTMS. PCMs are the only materials

used in pure PCM-based BTMS that serve as the heat sink for
dissipating heat produced by LIBs during charging or
discharging cycles. PCMs effectively maintain the battery’s
target temperature by absorbing extra heat during the
progression of solid−liquid phase change and storing it as
latent heat. With the battery cells, the PCM which maintains
close contact with pure PCM-based BTMS, enabling effective
and efficient heat transfer. The benefit of using a PCM in the
BTMS is that it reduces the temperature swings of the battery,
hence extending its life and improving performance. PCM
implementation within BTMS was recommended by Al-Hallaj
and Selman100 and reported a more-consistent temperature
distribution than the natural and induced convective BTMS. A
test prototype was built and discovered that the battery peak
temperature decreased at a discharge rate of 1 C. Duan and
Naterer94 conducted exploratory evaluations of two distinct
PCM-based battery cell management systems designs: the
PCM attire surrounding the battery pack and the overall PCMT
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Table 5. Thermochemical Properties of Several PCMs

PCM

latent heat
of fusion
(kJ/kg)

melting
point
(°C)

density
(kg/m3)

thermal
conductivity
(W (m K)−1) ref

paraffin wax 150−250 42−56 880−
950

0.20 87

beeswax 177 61.8 950 − 88
erythritol 340 117 1450 0.73 89,

90
octadecane 243−244 27.5−28 774 0.15−0.36 88
palmitic acid 222 61 989 0.21 87
stearic acid 160 55.1 848−

965
0.172 91

lauric acid 177.4−211.6 41−44.2 848−
1007

0.139−0.192 88

acetic acid 192 17 1214 0.26 87
urea 250 134 1320 0.22 92
acetamide 241 81 1159 − 88
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canister. who discovered that both designs were successful in
keeping the desired battery temperature. They also looked at
how the PCM jacket performed in various heating rates and
environmental conditions. In another study, Hemery et al.101

comparison of PCM-based BTMS to forced and natural air-
cooled BTMS revealed that PCM-based BTMS was more
successful at achieving temperature homogeneity, with 0.5 C,
as opposed to 4 C in natural convection, and 1 C in forced
convection. However, it was discovered that 3 m/s forced
convection outperformed PCM-based BTMS when reducing
the battery temperature. A theoretical model for PCM-based
cylindrical battery cooling was developed by Yang et al.95 and
experimentally validated by PCM melting around battery cells
and reported that metal housing (metal and acrylic) provides a
better thermal management choice, since PCM melted more
slowly inside the acrylic housing, because of PCM’s adherence
to the acrylic housing. Yan et al.102 constructed a composite
board for battery cooling with a heat-conducting shell, an
insulating panel, and PCM and found that the PCM latent heat
increased from 225 kJ/kg to 2250 kJ/kg, the TR was prolonged
from 451 s to 674 s. PCM has its ability to extract heat from
the battery cell but it has a drawback: its low thermal
conductivity. Therefore, many researchers have used many
additives for enhancing the heat-extraction rate, shown in
Table 7.
4.2. Composite-PCM (CPCM)-Based BTMS. Composite-

PCM (CPCM)-based BTMS have gained considerable
attention, because of their increased capacity for heat control
in recent years, compared to conventional BTMS systems. A
CPCM is created by combining two or more materials with
distinct melting temperatures and latent heat, resulting in a
higher temperature to melt down and conceal heat than the
separate PCM components, allowing it to absorb and release
heat more effectively throughout the battery’s charging and
discharging cycles.108 CPCMs have many advantages over
traditional PCMs, including higher thermal conductivity, better
mechanical properties, and shape stability.109,110 They are an
effective thermal energy storage (TES) medium and can store

higher heat per unit volume, compared to the sensible storage
materials like masonry or rock.111 Adding other material mixes
with the base PCM, it improves the thermal conductivity of the
base PCM, as shown in Table 8. The summary of the recent
works for cooling of battery by using CPCM is given in Table
9. Hybrid and CPCM have achieved significant thermal
management than pure PCM as shown in Figure 9. Some
CPCMs are described as follows.
4.2.1. PCM with Carbon-Based and Other Metal Oxide

Nanocomposites. An innovative strategy to increase battery
thermal management is PCM with a carbon-based thermal
conductivity enhancer. It has been demonstrated that adding
carbon-based components to the PCM, such as graphene,
carbon fibers, and carbon nanotubes, considerably improves
the thermal conductivity and facilitates more effective heat
transmission between the battery pack and the PCM.
According to a study by Bahiraei et al.,127 adding graphene

platelets and carbon nanofibers increase the thermal
conductivity of 620% and 1100%, respectively. Results of
their indicate that it is possible to optimize the development of
PCM-based thermal management systems by utilizing the
tradeoff between the enhancement of thermal conductivity and
the suppression of natural convection inherent in nano-
composites. Carbon fibers are widely used in the aerospace and
automotive industries because of their stiffness, high strength,
and thermal conductivity. The incorporation of carbon fibers
into PCMs can significantly improve their thermal con-
ductivity, allowing for faster charging and discharging rates.
Additionally, overall properties of the PCM including
mechanical properties can also be ameliorated by the addition
of carbon fibers, making it more resistant to deformation and
cracking during repeated phase change cycles. Babapoor et
al.128 paired PCM with carbon fibers to improve the battery’s
thermal performance. They used experimental methods to
examine the battery’s performance while adjusting the mass
percentage (32%, 46%, and 67%) and the lengths of the carbon
fiber (2, 3, 5, and 8 mm) at heat dissipation rates of 2 and 4 W.
The outcome showed that a mass fraction of 0.46% was

Table 7. Thermal Properties of PCM after Adding Additives

PCM type thermal conductivity of PCM (W (m K)−1) additives thermal conductivity of the mixture country ref

paraffin 0.25 graphene 45 USA 103
1-tetradecanol 0.33 silver nanowire 1.47 Hungary 104
N-docosane 0.21 graphite powder 0.82 Turkey 105
hexadecane 0.16 Al particles 1.24 China 106
inorganic eutectic 0.48 carbon fiber 1.8 Italy 107

Table 8. Several Composites and Their Properties, along with Thermal Conductivity

CPCM
thermal conductivity of PCM

(W (m K)−1)
pore size
(PPI)

porosity
(%)

thermal conductivity of
CPCM country ref

pure paraffin/nickel foam pure paraffin/copper
foam

0.31 25 97.28 1.22 China 112
10 97.65 0.98
5 97.17 1.28
25 96.96 4.6
10 96.58 5.2
5 96.83 4.95

paraffin/ copper foam 0.2 20 97 0.80 China 113
95 6.35
90 11.33

paraffin/ expanded graphite 0.2 − − 14.5 USA 114
paraffin/ expanded graphite 0.2697 − − 4.676 China 115
PCM/aluminum foam 0.25 40 80 43.8 USA 116
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determined to be optimal for the battery’s homogeneity and
temperature decrease. Additionally, it is established that
temperature uniformity benefits most from 5 mm of carbon
fiber, whereas 2 mm of carbon fiber was shown to be the most
effective. Frusteri and co-workers107 examined how carbon
fibers affected an inorganic PCM to improve heat conductivity.
Therefore, a eutectic PCM mixture of Mg (NO3) was added
with a distribution of carbon fibers of varying lengths. The
composite’s thermal conductivity and 26H2O−MgCl2·6H2O−
NH4NO3 were measured using the hot-wire method. The
results demonstrated that the enhancement of heat diffusion
was significantly attributed to the uniformity of carbon fibers in
PCM. Despite the fact that there has been a lot of research on
the subject of LIB thermal management, nothing is known
about the ideal parameters for these batteries’ use in carbon
fiber/CPCMs. Thus, it appears that the use of carbon fiber in
PCM for LIB heat control is novel in this industry.
Nanomaterials, which are materials with dimensions on the

nanometer scale, can improve the thermal conductivity of
PCMs by increasing the number of conductive pathways in the
material. The addition of nanomaterials also allows for more
efficient heat transfer, resulting in faster charging and
discharging rates of the PCM. Various nanomaterials, such as
carbon nanotubes, graphene, and metal nanoparticles, have
been investigated for their effectiveness in enhancing the
thermal properties of PCMs. The outcomes of some research
works are shown in Table 10, using nanoparticles in PCM. The
effectiveness of nanomaterials in enhancing the thermal
properties of PCMs is dependent on several factors, including
the type, concentration, and size of the nanomaterials.
Additionally, the compatibility of the nanomaterials with the
PCM must be considered to prevent unwanted phase
separation or degradation of the PCM. Karimi et al.129

enhanced PCM’s thermal conductivity by including metal
nanoparticles and metal matrix. The battery performance with
Ag, Cu, and Fe3O4�three different nanoparticles�performed
better than with pure PCM. Ag nanoparticles were found to be
present in the most persuasive PCM, which lowered the
battery temperature differential by 50%. Multiwalled carbon
nanotubes (MWCNT) and graphene were employed in PCM-
based BTMS by Zou et al.130 The inclusion of MWCNT and
graphene (1% mass fraction) enhanced the thermal con-
ductivity of pure PCM by 41% and 61.5%, respectively. They
combined PCM with various mass ratios of MWCNT and
graphene, and the greatest improvement was seen when 30%
MWCNT and 70% graphene were used. The maximum battery
temperature for this improved CPCM was lower than 46 °C.
Overall, the incorporation of nanomaterials into PCMs shows
promise in improving the thermal properties of these materials
for TES applications. To optimize the kind and concentration
of nanomaterials for certain PCM applications, as well as to

look into the long-term stability and safety of these composite
materials, more study is required. In the BTMS that uses PCM,
enlarged graphite PCMs are used as a heat conductivity
enhancer. The total effectiveness of the BTMS can be raised by
combining PCMs with expanded graphite, a highly conductive
material, to boost PCMs’ thermal conductivity. According to a
study by Jiang et al.131 utilized EG and observed that the
incorporation of EG significantly lowers the temperature rise of
LIB and significantly increases the thermal conductivity of
CPCM. The CPCM also exhibits exceptional BTMS perform-
ance with EG mass fractions ranging from 9% to 20%. The
effectiveness of BTMS employing the CPCM/EG on a laptop
battery pack was assessed by Al-Hallaj et al.100 The findings
showed that BTMS with PCM is smaller and lighter than
conventional BTMS. Lin et al.132 employed graphite sheet and
PCM-impregnated EG matrix to simulate and design a passive
heat management system for LiFePO4 battery modules.
Alrashdan et al.114 focused on the thermomechanical behaviors
of paraffin and EG blocks in relation to the BTMS of LIBs.
Goli et al.,103 claimed that graphene-enhanced hybrid PCM
caused a significant shift in the BTMS of LIBs. Mo et al.133

used 79.5 wt % paraffin, 5.5 wt % expanded graphite, and 15
wt % epoxy resin to create CPCM. To improve convective heat
transfer, the CPCM module made up of sleeve-shaped CPCM
units has expanded airflow channels and a larger heat transfer
surface area, measuring 3.63 × 10−3 m2. As a result, the unit-
assembled component’s thermal resistance is noticeably lower
than that of a normal cuboid-shaped section by 52.0% and
60.1%, respectively, and its heat flux is increased by a factor of
7 times in either of the cooling and preheating modes. This
BTMS performs exceptionally well in cooling tests, regulating
the temperature and temperature differential below 40.30 and
2.80 °C at a discharge rate of 3 C, accordingly.
4.2.2. PCM with Metal-Based Thermal Conductivity

Enhancer. It has been demonstrated that adding metal-based
enhancers to PCMs, such as copper, aluminum, and graphite,
can increase their heat conductivity and lead to more effective
TES and release. There are several ways to apply these
enhancers, such as coating, embedding, and physical mixing.
Hu et al.138 examined a CPCM that is two times more
thermally conductive than the original PCM and contains a
porous metal. Examined was the effect of the porous structure
in the CPCM. The findings showed that the impregnation ratio
of the PCM, not the pore size, could adequately explain the
latent heat of the phase transition composite. AIN was used
with PCM by Zhang et al.118 to enhance its thermal
conductivity. The CPCM was made with different mass
fractions of AIN (5%, 10%, 15%, 20%, and 25%), and a 20%
mass fraction showed the greatest improvement in thermal
conductivity. The maximum battery temperature was de-
creased employing PCM/AIN mixture by 19.4%, compared to
air-cooled BTMS. While introducing metal-based thermal
conductivity enhancers has shown promising results, the
optimal amount and type of enhancer required for a given
PCM depends on various factors, including specific applica-
tions, the operational temperature range, and the desired
thermal conductivity. In conclusion, the incorporation of
metal-based thermal conductivity enhancers can significantly
ameliorate the thermal conductivity of PCMs, resulting in
more efficient TES application and release heat faster.
However, further research is required to optimize the use of
these enhancers for various PCM applications.

Figure 9. Process flow diagram for vacuum impregnation.
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4.2.3. PCM with Metal Fiber. Metal fibers, such as copper,
aluminum, and nickel, have high thermal conductivity and the
incorporation of these metal fibers into the PCM can form a
composite material. The resulting PCM-metal fiber composite
exhibits an increment of thermal conductivity, compared to
pure PCM. The heat conductivity of the CPCM can be further
enhanced by adding more metal fiber to the PCM, as well as by
optimizing its size and distribution. Pan and Lai139 suggested a
novel use for copper fiber/paraffin composite in battery
temperature control. They utilized four BTMS�pure PCM,
PCM with copper fibers, PCM with copper foam, and natural
air blowing�and found that the CPCM made of copper fiber
offers effective BTMS. A 28.6% mass percentage of copper
fiber was added, resulting in a 1.9 C decrease in the maximum
battery temperature. Optimizing the mass fractions of copper
fibers (28.1%, 47%, 51.5%, and 60.5%) also enhanced the
performance of the battery. The largest temperature declina-
tion was found to be displayed by copper fibers with a mass
percentage of 60.5%, while the optimal uniform temperature
was found to be achieved with a mass fraction of 47% of
copper fibers. Taking into consideration both temperature
drop and uniformity, the ideal mass fraction of copper fiber
was found to be 47%.
For the cooling of LIBs, Zhu et al.140 combined highly

conductive copper microfibrous media with PCM. By using
this cutting-edge technology, the battery was able to operate
under the harsh conditions of a 15 C discharge rate while
keeping the cell temperature below 48 °C. Overall, PCM-metal
fiber composites have great potential for use in TES
applications, particularly for BTMS. The high thermal
conductivity of the metal fibers can improve the efficiency of
heat transfer and TES in the composite material, while the high
latent heat storage capacity of the PCM can ensure that the
stored energy is released as needed. Further research is
warranted to optimize the composition and properties of
PCM-metal fiber composites for specific applications and to
assess their long-term durability and reliability.
4.2.4. PCM with Metal Mesh. The use of metal meshes in

PCM-based BTMSs allows for the improvement of heat
transfer by increasing the effective thermal conductivity of the
system. The metal meshes serve as thermal conductors, helping
to diffuse heat more evenly and efficiently throughout the
PCM. Moreover, the high surface area of the metal mesh
enables better contact with the PCM, facilitating a more
efficient heat transfer. These features make metal mesh-based
PCM BTMSs more effective at reducing the adverse effects of
thermal runaway.
Lazrak et al.141 investigated the application of PCM and

copper mesh in a small prototype battery. They found a 10 °C
greater decrease in battery temperature after discharge,
compared to a pure PCM system. In order to look into how
phase change temperature and thermal conductivity affect
battery performance, they also built a three-dimensional (3D)
numerical model. They suggested that the ideal alternative
would be to select a PCM with strong thermal conductivity
whose phase change temperature is close to the battery’s safe
limit temperature. Wu et al.126 investigated a CPCM plate that
included EG, paraffin, and copper mesh to control the battery
pack temperature. The toughness and thermal conductivity of
the CPCM were improved by using copper mesh as a
framework. At higher discharge rates of 5 C, copper mesh was
found to be more effective, and a maximum 5 C temperature
drop in the battery was attained. These studies’ findings show

that metal mesh-based phase change material systems have the
potential to enhance LIB temperature management in electric
vehicles. To improve these systems’ functionality and design,
as well as to assess their durability and long-term depend-
ability, more study is necessary.
4.2.5. PCM with Metal Foam. Metal foams are porous

materials that possess excellent thermal conductivity, high
surface area, and low weight. By embedding PCMs within
metal foams, the material’s thermal properties can be
significantly enhanced, resulting in a more effective BTMS,
as shown in Figure 9. Some studies have investigated the use of
PCMs with metal foams for BTMS. For instance, Javani et
al.142 conducted a quantitative investigation on the use of n-
octadecane in polyurethane foam for BTMS. In comparison to
dry foam, the results showed that PCM-induced wet foam
reduced battery temperature by 7.3 °C. The battery integrated
inside the EV was subjected to an experimental examination by
Rao et al.,143 using paraffin/copper foam under road operating
conditions. The use of CPCM reduced the battery’s highest
temperature and temperature differential by 31.4% and 66.3%,
respectively. With the help of CPCM, Mehrabi-Kermani et
al.144 created BTMS by mixing copper foam, a heat sink, and a
PCM. The results show a significant reduction in the highest
battery temperature as well as the temperature disparity. After
40 min of operation without copper foam, the battery
temperature was observed to reach 60 °C, but only 53.5 °C
even after 100 min with copper foam. Wang et al.145 used
aluminum foam to improve PCM thermal conductivity when it
came to battery temperature regulation. The PCM’s heat
conductivity was increased by 218 times using aluminum foam.
The inclusion of CPCM caused temperature decreases of
62.5% and 53%, respectively, at discharge rates of 1 and 2 C.
All things considered, combining PCMs with metal foams has
been shown to be a viable strategy for raising the effectiveness
and performance of BTMS. Subsequent investigations are
required to enhance the structure and components employed
in these systems and investigate the possibility of utilizing them
in many other contexts.
4.3. Nanofluid-Based PCM. Battery cooling performance

is mandatory to prevent its explosion and thermal runways.
However, the liquid-based cooling such as water and ethylene
glycol has a restriction for its low thermal conductivity. Hence,
there have been proposed many methods to keep the battery
temperature into the desirable range. One of the finest
methods is to disperse nanoparticles into liquid to enhance the
thermal conductivity of the base liquid. It is found from the
research article that the incorporation of the nanoparticles
would improve the thermal conductivity of the base fluid. Lee
et al.146 measured the thermal conductivity of the base fluid
water and ethylene glycol with the incorporation of CuO and
Al2O3 nanoparticles and observed that the enhancement of
thermal conductivity of ethylene glycol was noticed more than
20% at 4% of volume fraction of CuO nanoparticle. The
enhancement of thermal conductivity occurs due to the fact of
Brownian motion (constant and random motion of nano-
particles in base fluid) of the nanoparticles into the base
fluid.147 In addition to Brownian motion, several other
processes influence convective heat transfer. These include
collisions between molecules in the base fluid, thermal
diffusion of nanoparticles in the fluid, and the thermal
interaction between nanoparticles and base fluid molecules.148

However, it has drawbacks for its difficult maintenance, high
initial cost, and complicated system.149,150 Researchers have
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proposed nanofluid, which is prepared through uniform mixing
of nanoparticles into the base liquid.151 Nanofluids were
prepared by the inclusion of nanoparticles like ZnO, Al2O3,
TiO2, CuO into the base fluid (water and ethylene glycol).

152

Table 11 presents the summary of recent works for battery
cooling purposes by using nanofluid. Mitra et al.153 developed
a nanofluid by adding MWCNTs to ethylene glycol and water
at three distinct fractions of volume (0.15%, 0.3%, and 0.45%).
They then compared the cooling properties of the nanofluid to
that of water and the ethylene glycol−water mixture. The
battery cells’ mean temperature drops to a maximum of 6.9,
10.2, and 11 °C at 2.1 °C in single-channel flow, dual-channel
parallel flow, and dual-channel counter-flow arrangements,
respectively, at 0.45% volume fractions of MWCNTs. Dual-
channel with counter-flow system offers the best performance,
with regard to temperature drops in the range of 8.6−13 °C.

5. THERMAL MANAGEMENT USING FINS
The battery case is connected to thin, expanded surfaces called
fins. They enhance the battery’s surface area, facilitating
increased convectional heat dissipation. Heat from the battery
is transported to the fins, which release the heat into the
surrounding atmosphere. A schematic diagram of the PCM-
based BTMS with a biomimetic fin is shown in Figure 10.

Several aspects need to be taken into account when designing a
fin-based BTMS. These include the size and shape of the fins,
the material used to construct them, and the placement of the
fins on the battery casing. According to studies, well-designed
fins can considerably increase a battery’s thermal performance,
lowering the possibility of overheating and lengthening its life.
Additionally, fin-based thermal management systems can be
combined with other techniques, such as PCM or active
cooling systems, to further improve battery performance and
reliability.
Expanded surfaces can be used to improve the area available

for heat transmission and address the issue of PCM’s low
thermal conductivity. Additionally, some researchers have used
fins within PCM-based battery packs to improve the heat
regulation. Zhong et al.164 used CPCM and metal fins inside
the battery cell. Even in the presence of an intense 40 °C
ambient condition and a high discharge rate of 5 C, the highest
temperature was maintained below 45 °C with a temperature
differential of no more than 5 °C. Experimental research on the

impact of fins and PCM on prismatic battery performance was
conducted by Ping et al.165 With fins installed, the highest
battery temperature was kept below 65 °C even at a high
discharge rate of 3 C. They also developed and evaluated a
computational model for PCM-fin-based BTMS. Thinner fins,
optimal fin spacing, and thicker PCM layers were found to be
effective when the impacts of fin thickness, spacing, and
thickness were examined. The cylindrical prototype battery
cells with longitudinal fins are studied by Sun et al.166 After
testing the effect of fin count with 4, 8, and 12 fins, it was
found that eight fins were the best option; additional fins
improved the heat transfer area but produced less PCM.
Heyhat et al.167 studied a numerical model to analyze how fins
with PCM affect battery performance. They focused on the fin
count (1, 3, and 5) and realized that having more fins did not
necessarily translate into an advantage. The maximum battery
temperature dropped by 2 and 4 °C, respectively, with heat
generation rates of 4.6 and 9.2 W. Fin utilization was also
compared to the use of metal foam and nanoparticles. The
metal foam proved to be the most effective, even though fins
and nanoparticles were found to be more efficient. The
literature indicates that most investigations have focused on
longitudinal fins, with only one researcher testing circular fins.
However, further research into the combination of many
shaped fins, an ideal layout, or creatively made fins must be
required.
5.1. Effects of Internal Fin Shape in the PCM Module.

The internal fin shape of the PCM module, as shown in
Figures 11 and 12, has a significant impact on its thermal

performance, because it influences the rate of heat transfer and
the quantity of energy that can be stored or released by the
PCM during phase shift. Several researchers have examined the
implications of an internal fin shape on PCM module
performance. For instance, Weng et al.169 illustrated in Figure
12 the impact of fins of various shapes on the PCM-based
BTMS. The two forms of rectangular, triangular longitudinal
fins, as well as circular fins, were explored. When the natural
convection approach was utilized to disperse heat from PCM,
it was observed that longitudinal fins more effectively reduced
the battery temperature. In addition, they reported an
optimized design with circular and longitudinal fins, with

Figure 10. Schematic diagram of PCM battery cooling system with
biomimetic fin. [Reproduced with permission from ref 168. Copyright
2021, Elsevier.]

Figure 11. Types of fins (a) rectangular fins, (b) triangular fins, (c)
trapezoidal fins, (d) I-shaped fins, and (e) T-shapd fins. [Reproduced
with permission from ref 170. Copyright 2020, Elsevier.]

Energy & Fuels pubs.acs.org/EF Review

https://doi.org/10.1021/acs.energyfuels.4c02062
Energy Fuels XXXX, XXX, XXX−XXX

N

https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02062?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02062?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02062?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02062?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02062?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02062?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02062?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02062?fig=fig11&ref=pdf
pubs.acs.org/EF?ref=pdf
https://doi.org/10.1021/acs.energyfuels.4c02062?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


circular fins inserted in the bottom portion and longitudinal
fins in the other portions. The enhanced design of this
structure resulted in a 5.5% reduction in the highest battery
temperature, as compared to the previous rectangular finned
construction.
Choudhari et al.171 investigated the use of fin construction in

the PCM module by raising the total number of fins for
improved heat transfer and utilizing a variety of fin forms,
including rectangular, triangular, trapezoidal, I-shaped, and T-
shaped fins. The battery temperature decreases by 2 and 6.4 °C
at discharge rates of 2 C and 3 C, respectively, as a result of the
fin arrangement of the PCM module incorporation.
Furthermore, it reduces the temperature differential between
the PCM and battery from 3.36 °C to 1.78 °C, as a result of
the PCM’s improved conduction quality. A comparison graph
of the temperature difference between LIBs and PCM
containing different types of fins is plotted in Figure 13. The
majority of fin structures exhibit minimal variations in their
behavior concerning battery temperature. Nonetheless, I-
shaped fins are the most efficient and triangular fins are the
least efficient when it comes to temperature difference as
reported in Figure 13. While circular fins have a greater
capacity for heat conduction within the PCM due to their

larger heat transfer area, and longitudinal fins are superior for
heat dissipation by air convection.
5.2. Effects of Fin Number in the PCM Module.

Numerous researchers have examined the influence of fin
count and fin arrangement on the performance of PCM-based
thermal systems.172−174 Figure 14 shows a typical arrangement
of the battery module with fins. These investigations
demonstrate that the addition of fins can efficiently reduce
battery temperature due to the fact that increasing the number
of fins increases the thermal conductivity through PCM.
Adding more fins will result in an increase in fin area, higher
expenses, and a reduction in PCM in the structure as a whole.
This reduction in PCM volume could reduce the PCM
module’s ability to store heat. The PCM module must have the
optimal number of fins in order to maximize heat transmission.
Furthermore, the suggested fin intensified systems might
function well, even in hot weather. In comparison to the PCM
system, the equivalent working time rose by 1.48, 1.49, and
1.81 times at ambient temperatures of 20, 30, and 40 °C,
respectively.175 This indicates that the fin-enhanced PCM
systems outperform the PCM systems.
Using numerical simulations, Jiao et al.176 examined the

thermal effectiveness of a PCM module with varied numbers of
fins. According to the study, increasing the number of fins from
four to eight enhanced the cooling performance of the module
by ∼10%. In a similar study, Liao et al.177 studied the thermal
properties of a PCM module with varying fin numbers and
discovered that increasing the number of fins from 4 to 8
reduced the battery’s maximum temperature by 25%. A figure
of a PCM module with different numbers of fins is represented
in Figure 15 and the temperature deviation of a battery having
several fins (see panels (a) and (b)) is shown in Figure 16
(presented later in this work). It is found that when the
number of fins is raised to four, the temperature decreases by
between 2 and 6.1 °C.170 However, the temperature drop
decreases as the number of fins grows, from 0.6 to 1.9 °C when
the number of fins increases from 4 to 6.
5.3. Effects of External Heat-Transfer Coefficient in

the PCM Module. The size, shape, and orientation of the
PCM module, as well as the environmental factors like
temperature, thermal conductivity, and fluid flow velocity, all
affect the value of this coefficient. The PCM module’s
temperature distribution, charging and discharging rates, and
overall system efficiency are all determined by the external
heat-transfer coefficient. The impact of the external heat-
transfer coefficient on PCM-based TES system performance
has been the subject of several studies. An experiment that was
carried out by Chen et al.178 revealed that the temperature of
heat-transfer fluid and flow rate has significant impacts on
charging and discharging rates. The effects of PCM module
geometry and orientation on the temperature distribution and
heat-transfer coefficient within the PCM were found
quantitatively in certain investigations. The researchers came
to the conclusion that using fins or rotating the PCM module
can significantly increase the outside heat-transfer coefficient.
The impact of the exterior heat-transfer coefficient on
performance has been investigated by researchers. For
example, Wang et al.179 assessed the impact of fin thickness
and fin spacing on a PCM module’s heat-transmission
coefficient and melting process. They found that the PCM
melting process was hastened by increasing the heat-trans-
mission coefficient and decreasing the fin spacing. It was
attempted to construct the PCM module with various exterior

Figure 12. Stereograms and corresponding experimental images of
the placement of the three fin cases. [Reproduced with permission
from ref 169. Copyright 2020, Elsevier.]

Figure 13. Temperature difference between LIB and PCM containing
different types of fins. [Reproduced with permission from ref 170.
Copyright 2020, Elsevier.]
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heat-transfer coefficients on the temperature of the LIB. The
heat-transfer coefficient of the LIB increases from 5 W m−2 K−1

to 15 W m−2 K−1, while the battery temperature drops quickly
from 4.8 °C to 25.6 °C (at discharge rates of 2 and 3 C,
respectively).170 However, there was a slight drop in
temperature afterward.
5.4. Effect of Type of Branch Structured Fins. Branch

structured fins are a form of expanded surface that provides
increased heat-transfer area and can be utilized to improve
BTMS heat dissipation. The effect of different forms of branch
structured fins, such as tree-like fins, Y-shaped fins, and X-
shaped fins, on BTMS performance has been explored. Battery
module with only PCM for cooling purposes exhibits lower
heat dissipation from the battery to the ambient, particularly in
the high temperature environment or hot region due to the low
thermal conductivity of PCM and suffer from heat-storage
saturation after three or four cycles. Hence, the thermal energy
is entrapped into the battery module for having a low heat
dissipation attribute and so only traditional fin with single heat
flow channel is not sufficient to cool the battery at the required
range for enhancing the performance of the battery cell.
Therefore, Weng et al.140 proposed a different shape of fins,
including rectangular fin (single heat flow channel), V-shape

(two heat flow channel), Y-shape (three heat flow channel),
and X-shape (four heat flow channel) to enhance the heat-
transfer area for higher heat dissipation from the battery cell to
the ambient, as depicted in Figure 16. In this study, the authors

observed that, by keeping the highest cell temperature below
47 °C in a high temperature environment of 40 °C, the X-
shape demonstrated the highest performance. Hence, the novel
fins having the higher number of heat flow channels with
higher surface area improve the cell performance and the
efficacy of BTMS. In addition, researchers have investigated
the usage of several materials for branch structured fins. The
type of branch structured fin and the material employed have a
substantial impact on the heat-transfer efficiency of BTMSs.
5.5. Effects of the Position of the Cylindrical Ring.

The configuration, organization, and spacing have a substantial
impact on the thermal safety of the LIB pack.181 For a Li-ion
BTMS that uses PCMs, the cylindrical ring’s location is an
important design factor. The BTMS’s performance could be
significantly impacted by the cylinder ring’s positioning,
especially in terms of heat-transfer rate and battery temper-
ature distribution. The effect of the ring’s radial position has
been investigated by several researchers. The dimensionless
distance of the ring (d*), which is the ratio of the radial
distance of the ring to the diameter of the battery, indicates the
position of the cylindrical ring. Sun et al.166 assessed four
dimensionless distances of the ring (d* = 0, 0.1, 0.2, and 0.3)

Figure 14. Arrangement of the battery module. [Reproduced with permission from ref 175. Copyright 2021, Elsevier.]

Figure 15. PCM module with different number of fins: (a) 4, (b) 6,
(c) 8, (d) 10, and (e) 12. [Reproduced with permission from ref 170.
Copyright 2020, Elsevier.] Figure 16. Schematic diagram of different branch structures of fins.

[Reproduced with permission from ref 180. Copyright 2019,
Elsevier.]
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in their experiment. Figure 17 shows a schematic of the
cylindrical ring’s location and changes in the battery’s surface
temperature over time at various ring positions.
A larger ring is applied as the distance increases, prolonging

the battery’s life and preserving its temperature. It seems that
the performance of heat management is improved by using a
larger ring. However, when the dimensionless distance
approaches 0.3, the battery life starts to drastically decrease.
There are two variables that could be the cause. One is that
using a large ring result in the ring’s volume expanding, which
lowers the PCM in the BTMS; the other is related to the ring’s
reduced ability to transfer heat.
5.6. Effects of the Number of Longitudinal Fins. One

of the most popular methods for improving heat transfer in
cylindrical batteries is the introduction of longitudinal fins. The
impact of the quantity of longitudinal fins on the thermal
behavior of LIB has been the subject of numerous
investigations. Sun et al.166 analyzed the ideal quantity of
longitudinal fins needed to improve a cylindrical battery’s
thermal performance and reported that the highest battery
temperature decreased as the fin count rose. Furthermore, it
was discovered that seven fins were the ideal quantity.

6. OPPORTUNITIES AND CHALLENGES
Battery thermal management typically uses the PCM cooling
system, because of its improved temperature control and
equitable distribution. It is commonly known that maintaining
LIB’s high energy power density contributes to EV and HEV
driving range extensions. Therefore, a high-efficiency BTMS
can be achieved by decreasing the system weight and
increasing the energy density. The weight and volume of the
overall power system progressively rose with traditional PCM
modules, especially those with large PCM blocks and matrices,
which greatly decreased the energy density. To address the
previously described problem, new lightweight PCMs and
PCM-BTMSs must be created in unique shapes. Furthermore,
research on PCM-based BTMS is still in the experimental
stages, in contrast to more well-established methods of liquid
and air cooling.182

The established PCM-functioning packs of batteries and fin
setups are also in the sample stage and have not been pushed
for use in real-world electric vehicle applications. By enhancing
the PCM thermophysical characteristics and PCM-based
BTMS, particularly efficacy optimization, structural design,
space, weight, cost, energy consumption, and cooling
efficiency, the manufacturing of PCM-based battery modules
can be accelerated. High-density power batteries require more
than one PCM heat-transfer system to suit their heat-

dissipation needs.183 For the time being, future progress will
inevitably be governed by the more-efficient hybrid cooling
systems based on PCM that integrate active and passive
cooling technologies. Based on their key characteristics, the
active and passive components of the composite cooling
system each have unique benefits. The complementing system
will effectively remove the heat that has been collected in the
PCM heat-dissipation medium, enhancing the material’s
capacity to store and release heat as well as extending its
cycle life and efficiency of use for overall performance and
safety.
The BTMS’s usefulness was severely constrained by the

practical applications’ large disregard for structural stability
issues. Phase change component precipitation/leakage, in-
sufficient mechanical characteristics, CPCM matrix deforma-
tion, and long-term/hard operating EV/HEV cycles were
among these problems. A unique method that is utilized to
create certain shape-stabilized PCM with pure paraffin (PA)
and supporting matrices can be employed to tackle these
issues. Using carbonaceous additives, plastic/metallic skeleton
systems, and supporting polymer substrates such as low-
density polyethylene (LDPE), high-density polyethylene
(HDPE), polyethylene, and epoxy resin, form-stable CPCM
can be made to maintain its shape and stop leaks during phase
change periods.
It has been discovered that the battery’s thermal perform-

ance improves with increasing PCM content since the material
can store more heat. However, there is a limit on the battery
pack’s internal PCM replenishment capacity. Furthermore,
when the quantity of PCM rises, the battery pack’s weight also
increases. Consequently, consideration must be given to weight
and space constraints while inserting PCM into the battery
pack. A variety of PCM-based hybrid BTMS approaches exist,
including PCM/TE, PCM/HP, PCM/liquid, and PCM/air
cooling. Regarding cost, weight, degree of integration,
availability of space, and service life, each of these systems
has merits and limitations. This means that when developing a
logical design and establishing a suitable thermal management
system, the requirement for heat disposal under realistic
loading conditions must be taken into consideration.
Research has used PCM in combination with metal fins to

increase the area of heat transmission and compensate for the
low thermal conductivity of the material. The research
participants made several attempts to add more fins in an
effort to improve battery performance. More fins are known to
enhance the surface area available for heat transfer, but they
also prevent convection from occurring naturally. Therefore,
the number of fins should be selected as optimum for the best

Figure 17. Schematic of the position of the cylindrical ring. [Reproduced with permission from ref 166. Copyright 2019, Elsevier.]
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battery operation. In battery thermal management applications,
longitudinal and circular fins are typically utilized in
conjunction with PCM. However, studies must concentrate
on developing innovative shapes, such as spiral fins, with
optimal placement.

7. FUTURE RESEARCH DIRECTIONS
A schematic representation of the future research propositions
is reported in Figure 18. For the purpose of creating improved
PCM composites, research into natural materials and
architectures (such as the honeycomb structure, nacre, or
lotus leaves) can improve thermal conductivity, mechanical
strength, and overall thermal management performance. The
establishment of microscale/nanoscale structures that optimize
heat transport within the PCM modeled after naturally
occurring, effective heat exchangers, such as the vascular
networks in leaves or the heat-dissipation pathways in animal
skin. Battery temperatures can be dynamically controlled by
the design of adaptive systems influenced by biological
temperature regulation mechanisms, such as water retention
in humans or thermoregulation in reptiles. Furthermore, the
creation of smart control systems for real-time thermal
management involves the integration of biomimetic algo-
rithms, which imitate natural processes like the neural
networks in the human brain. Regarding hybrid systems
which operate better, combine PCM-based systems with other
bioinspired cooling methods like phase-change gels (which
resemble the structure of jellyfish) or evaporative cooling
(which, in turn, is inspired by animal panting). To improve
passive cooling expertise, PCM can be integrated with natural
ventilation systems that are modeled after termite mounds or
bird nests. In addition, research can be done on bioinspired
PCMs that have superior thermal stability, higher latent heat,
and quicker phase change rates. To develop sustainable BTMS,
investigation can be made on biodegradable and environ-
mentally acceptable PCMs that are modeled after natural
waxes, oils, and gels. The creation of biomimetic-based
computer models and simulations to forecast PCM-based
BTMS performance and behavior within varied operating
scenarios. Finally, to maximize the functionality and design of
BTMS, bioinspired optimization methods such as swarm
intelligence or genetic algorithms may prove applicable.

8. CONCLUSIONS
BTMSs based on PCMs have become a prevalent research
topic due to their ability to manage battery temperature and
limit the risk of thermal runaway. The various cooling
technologies�air-based, liquid, PCM, PCM with fins,
CPCM, nano-PCM, and nanofluid-based cooling systems�
were covered and highlighted in this Review. The causes of
battery thermal runaway, with a focus on LIBs used in EV, as
well as its detrimental impacts, have been highlighted in this
article. The significance of the BTMS and its various
approaches have since been examined and shown. Numerous
studies have examined and determined that both pure PCM-
based and CPCM-based BTMS are efficient at controlling
battery temperature. The use of a PCM in the BTMS is
beneficial as it reduces the temperature fluctuation of the
battery and thus prolongs the life and improves the battery
performance. CPCM has a higher melting temperature and
latent heat compared to the individual PCM components,
making it more effective in absorbing and liberating heat
during the charging and discharging processes of the battery.
Moreover, the use of fins, nanofluid and nano-PCM has also
been found to be an efficient way to cool down the battery. A
comprehensive review of different methods has been high-
lighted for the cooling purposes of the battery cell and the
major conclusions are drawn as follows:

• Phase change material can protect the battery cell from
overheating due to the increase in temperature. HP
combined with beeswax and RT 44HC lower the battery
surface temperature by ∼31.9 and 33.2 °C, respectively.

• The battery performance can be enhanced by incorpo-
rating composite material into PCM. The maximum
battery temperature and cell differential temperature can
be limited by 45 and 5 °C, respectively, by using a
kaolin/EG/ paraffin composite at a discharge rate of 4
C.

• Thermal conductivity of the PCM can substantially be
enhanced by incorporating graphene-coated nickel.
Additionally, the study revealed that an ∼70% decrease
in temperature difference can be obtained by introduc-
ing metal matrix composite into paraffin.

• Only base liquid (water and ethylene glycol) cannot
dissipate the higher heat from the battery cell. Hence,
nanofluid is introduced over the base liquid for

Figure 18. Schematic outlining the future research path of CPCM-based BTMS.
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enhancing thermal conductivity of base liquid. This was
demonstrated by a study used deionized water and
Al2O3 for cooling purposes of LIB (8650 type) and
successfully restrained the peak temperature and
temperature difference by ∼32 and 2.01 °C, respectively.

• The development of advanced heat-transfer technologies
such as microchannel heat exchangers and TECs can
enhance the performance of BTMS.
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■ NOMENCLATURE
Al2 O3 = aluminum oxide
ZnO = zinc oxide
LiCoO2 = lithium cobalt oxide
LiMn2 O4 = lithium manganese oxide
LiNiMnCoO2 = lithium−nickel manganese cobalt oxide
LiFePO4 = lithium iron phosphate
Li4 Ti5 O12 = lithium titanate
TiO2 = titanium dioxide

■ ABBREVIATIONS
EV = electric vehicle
LIBs = Li-ion batteries
BTMS = Battery Thermal Management System
TR = thermal runaway
SEI = solid electrode interlayer
PCM = phase change material
HP = heat pipe
OEM = original equipment manufacturer
HEV = hybrid electric vehicle
DOD = depth of discharge
Ah = ampere hour
TMS = Thermal Management System
CPCM = composite-PCM
TES = thermal energy storage
EG = expanded graphite
AlN = aluminum nitride
PA = paraffin
APP = ammonium polyphosphate
RP = red phosphorus
ER = epoxy resin
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MWCNT = multiwalled carbon nanotubes
LfBS = liquid-filled battery cooling system
LcBS = liquid-circulated battery cooling system
LDPE = low-density polyethylene
HDPE = high-density polyethylene
TE = thermoelectric
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